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The focus of this chapter is on

ˆ Basic introduction to extreme value theory (EVT)
ˆ Asset returns and fat tails
ˆ Applying EVT
ˆ Aggregation and convolution
ˆ Time dependence
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Notation

� Tail index
� = 1=� Shape parameter

MT Maximum ofX
CT Number of observations in the tail

u Threshold value
 Extremal index
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Extreme Value Theory
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Types of tails

ˆ In this book, we follow the convention of EVT being
presented in terms of theupper tails(i.e. positive
observations)

ˆ In most risk analysis we are concerned with thenegative
observationsin the lower tails, hence to follow the
convention, we canpre-multiply returns by -1

ˆ Note, the upper and lower tails do not need to have the
same thickness or shape
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Extreme value distributions

ˆ In most risk applications, we do not need to focus on the
entire distribution

ˆ The main result of EVT states that the tails of all
distributions fall into one of three categories, regardless of
the overall shape of the distribution

- See next slide for the three distributions

ˆ Note, this is true given the distribution of an asset return
does not change over time
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Weibull Thin tails where the distribution has a �nite endpoint
(e.g. the distribution of mortality and insurance/re-insurance
claims)

Gumbel Tails decline exponentially (e.g. the normal and
log-normal distributions)

Fr�echet Tails decline by apower law; such tails are know as
\fat tails" (e.g. the Student-t and Pareto distributions)
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Extreme value distributions
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Extreme value distributions

-1 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

0.5
Weibull
Gumbel



Financial Risk Forecasting © 2011,2016 Jon Danielsson, page 11 of 76

Introduction Extreme value theory Returns Applying EVT Aggregation Time

Extreme value distributions
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Fr�echet distribution

ˆ From the last slide, the Weibull clearly has a �nite
endpoint

ˆ And the Fr�echet tail is thicker than the Gumbel's
ˆ In most applications in �nance, we know that returns are

fat tailed
ˆ Hence we limit our attention to the Fr�echet case
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Generalized extreme value distribution

ˆ The Fisher and Tippett (1928) and Gnedenko (1943)
theorems are the fundamental results in EVT

ˆ The theorems state that the maximum of a sample of
properly normalized IID random variablesconverges in
distributionto one of the three possible distributions: the
Weibull, Gumbel or the Fr�echet
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Generalized extreme value distribution

ˆ The Fisher and Tippett (1928) and Gnedenko (1943)
theorems are the fundamental results in EVT

ˆ The theorems state that the maximum of a sample of
properly normalized IID random variablesconverges in
distributionto one of the three possible distributions: the
Weibull, Gumbel or the Fr�echet

ˆ An alternative way of stating this is in terms of the
maximum domain of attraction(MDA)

ˆ MDA is the set of limiting distributions for the properly
normalized maxima as the sample size goes to in�nity
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Fisher-Tippet and Gnedenko theorems

ˆ Let X1; X2; :::;XT denote IID random variables (RVs) and
the termMT indicate maxima in sample of sizeT

ˆ The standardized distributionof maxima,MT , is

lim
T !1

Pr
�

MT � aT

bT
� x

�
= H(x)

where the constantsaT andbT > 0 exist and are de�ned
asaT = T E(X1) and bT =

p
Var(X1)
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Fisher-Tippet and Gnedenko theorems

ˆ Then the limiting distribution,H(:), of the maxima as the
generalized extreme value (GEV)distribution is

H� (x) =

(
exp

n
� (1 + � x)� 1

�

o
; � 6= 0

expf� exp(� x)g ; � = 0
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Limiting distribution H� (:)

ˆ Depending on the value of� , H� (:) becomes one of the
three distributions:

ˆ if � > 0, H� (:) is the Fr�echet
ˆ if � < 0, H� (:) is the Weibull
ˆ if � = 0 , H� (:) is the Gumbel
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Asset Returns and Fat Tails
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Fat tails

ˆ The term\fat tails" can have several meanings, the most
common being\extreme outcomes occur more frequently
than predicted by normal distribution"

ˆ While such a statement might make intuitive sense, it has
little mathematical rigor as stated

ˆ The most frequent de�nition one may encounter is
Kurtosis, but it is not always accurate at indicating the
presence of fat tails (� > 3)

ˆ This is because kurtosis is more concerned with the sides
of the distribution rather than theheaviness of tails
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A formal de�nition of fat tails

ˆ The formal de�nition of fat tails comes fromregular
variation

Regular variation A random variable, X, with distribution
F(:) has fat tails if it varies regularly at in�nity; that is there
exists a positive constant� such that:

lim
t !1

1 � F(tx )
1 � F(t )

= x� � ; 8x > 0; � > 0
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Tail distributions

ˆ In the fat-tailed case, the tail distribution is Fr�echet:

H(x) = exp(� x� � )

Lemma A random variable X has regular variation at in�nity
(i.e. has fat tails) if and only if its distribution function F
satis�es the following condition:

1 � F(x) = Pr f X > xg = Ax� � + o(x� � )

for positive constant A, when x! 1
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Tail distributions

ˆ The expressiono(x� � ) is the remainder termof the
Taylor-expansion of Prf X > xg, it consists of terms of
the typeCx� j for constantC and j > �

ˆ As x ! 1 , the tails are asymptotically Pareto-
distributed:

F(x) � 1 � Ax� �

whereA > 0; � > 0; and8x > A1=�
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Normal and fat distributions
Normal and Student- t densities
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Normal and fat distributions
Normal and Student- t densities
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Normal and fat distributions
Pareto tails
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Normal and fat distributions
Pareto tails
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Normal and fat distributions
Pareto tails
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Normal and fat distributions
Pareto tails
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Normal and fat distributions

ˆ The de�nition demonstrates that fat tails are de�ned by
how rapidly the tails of the distribution decline as we
approach in�nity

ˆ As the tails become thicker, we detect increasingly large
observations that impact the calculation of moments:

E(Xm) =
Z

xmf (x)dx

ˆ If E(Xm) exists for all positivem, such as for the normal
distribution, the de�nition ofregular variationimplies that
momentsm � � are not de�ned for fat-tailed data



Financial Risk Forecasting © 2011,2016 Jon Danielsson, page 30 of 76

Introduction Extreme value theory Returns Applying EVT Aggregation Time

Applying EVT
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Implementing EVT in practice

Two main approaches:

1. Block maxima

2. Peaks over thresholds (POT)
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Block maxima approach

ˆ This approach follows directly from the regular variation
de�nition where we estimate the GEV by dividing the
sample into blocks and using the maxima in each block
for estimation

ˆ The procedure is rather wasteful of data and a relatively
large sample is needed for accurate estimate
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Peaks over thresholds approach

ˆ This approach is generally preferred and forms the basis
of our approach below

ˆ It is based on models for all large observations that
exceed a high threshold and hence makes better use of
data on extreme values

ˆ There are two common approaches to POT:
1. Fully parametric models (e.g.the Generalized Pareto

distribution or GPD)
2. Semi-parametric models (e.g.the Hill estimator)
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Generalized Pareto distribution

ˆ Consider a random variableX, �x a thresholdu and focus
on thepositive part of X� u

ˆ The distributionFu(x) is

Fu(x) = Pr( X � u � xjX > u)

ˆ If u is VaR, thenFu(x) is the probability that we exceed
VaR by a particular amount (a shortfall) given that VaR
is violated

ˆ Key result is that asu ! 1 , Fu(x) converges to the
GPD,G�;� (x)
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ˆ The GPDG�;� (x) is

G�;� (x) =

8
<

:
1 �

�
1 + � x

�

� � 1
�

� 6= 0

1 � exp
�

x
�

�
� = 0

where� > 0 is the scale parameter;x � 0 when� � 0
and 0� x � � �

� when� < 0

ˆ We therefore need to estimate both shape(� ) and
scale(� ) parameters when applying GDP

ˆ Recall, for certain values of� the shape parameters,
G�;� (:) becomes one of the three distributions



Financial Risk Forecasting © 2011,2016 Jon Danielsson, page 36 of 76

Introduction Extreme value theory Returns Applying EVT Aggregation Time

GEV and GPD

ˆ The GEV is the limiting distribution of normalized
maxima, whereas the GPD is the limiting distribution of
normalized data beyond some high threshold

ˆ Note, the tail index is the same for both GPD and GEV
distributions

ˆ The parameters of GEV can be estimated from the
log-likelihood function of GPD
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VaR under GPD

The VaR in the GPD case is:

VaR(p) = u +
�
�

" �
1 � p
F(u)

� � �

� 1

#
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Hill method

ˆ Alternatively, we could use the semi-parametric Hill
estimator for the tail index in distribution
F(x) � 1 � Ax� � :

�̂ =
1
�̂

=
1

CT

CTX

i =1

log
x(i )

u

wherex(i ) is the notation of sorted data, e.g. maxima is
denoted asx(1)

ˆ As T ! 1 , CT ! 1 andCT =T ! 0
ˆ Note that the Hill estimator is sensitive to the choice of

threshold,u
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Which method to choose?

ˆ GPD, as the name suggests, is more general and can be
applied to all three types of tails

ˆ Hill methodon the other hand is in the maximum domain
of attraction (MDA) of the Fr�echet distribution

ˆ Hence Hill method is only valid for fat-tailed data
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Risk analysis

ˆ After estimation of the tail index, the next step is to
apply a risk measure

ˆ The problem is �nding VaR(p) such that

Pr [X � � VaR(p)] = FX (� VaR(p)) = p

whereFX (u) is the probability of being in the tail, that is
the returns exceeding the thresholdu
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Risk analysis

ˆ Let G be the distribution ofX since we are in the left tail
(i.e. X � � u). By the Pareto assumption we have:

G (� VaR(p)) =
�

VaR(p)
u

� � �

ˆ And by the de�nition of conditional probability:

G (� VaR(p)) =
p

FX (u)
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VaR estimator

ˆ Equating the previous two relationship, we obtain:

VaR(p) = u
�

FX (u)
p

� 1
�

ˆ Fx(u) can be estimated by the proportion of data beyond
the thresholdu, CT =T

ˆ The VaR estimator is therefore:

\VaR(p) = u
�

CT =T
p

� 1
�̂
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EVT often applied inappropriately

ˆ EVT should only be applied in the tails
ˆ The closer to the centre of the distribution, the more

inaccurate the estimates are
ˆ However, there are no rules to de�ne when the estimates

become inaccurate, it depends on the underlying
distribution of the data

ˆ In some cases, it may be accurate up to 1% or even 5%,
while in other cases it is not reliable even up to 0.1%
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Finding the threshold

ˆ Actual implementation of EVT is relatively simple and
delivers good estimates where EVT holds

ˆ The sample sizeT and the choice of probability levelp
depends on the underlying distribution of the data

ˆ As arule of thumb: T � 1000 andp � 0:4%
ˆ For applications with smaller sample sizes or less extreme

probability levels, other techniques should be used
ˆ Such as HS or fat-tailed GARCH
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ˆ It can be challenging to estimate EVT parameters given
the e�ective sample sizeis small

ˆ This relates to choosing the number of observations in
the tail, CT

ˆ We have 2 conicting directions:
1. By loweringCT , we can reduce the estimation bias
2. On the other hand, by increasingCT , we can reduce the

estimation variance
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Optimal threshold C�
T
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Optimal threshold C�
T

ˆ If the underlying distribution is known, then deriving the
optimal threshold is easy, but in such a case EVT is
superuous

ˆ Most common approach to determine the optimal
threshold is theeyeball methodwhere we look for a
region where the tail index seems to be stable

ˆ More formal methods are based on minimizing the mean
squared error (MSE) of the Hill estimator, but such
methods are not easy to implement
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Application to the S&P 500 index
Returns from 1975 to 2015 { 10,000 observations
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Distribution of S&P 500 returns
Empirical distribution
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Distribution of S&P 500 returns
Tails truncated
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Hill plot for daily S&P 500 returns
From 1975 to 2015
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Hill plot for daily S&P 500 returns
From 1975 to 2015
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Upper and lower tails
The lower tail
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Upper and lower tails
The upper tail
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Aggregation and Convolution
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Aggregation of outcomes

ˆ The act of adding up observations across time is known
astime aggregation

ˆ And the act of adding up observations across
assets/portfolios is termedconvolution
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Feller 1971

Theorem Let X1 andX2 be two independent random
variables with distribution functions satisfying

1 � Fi (x) = Prf Xi > xg � Ai x� � i i = 1; 2

whenx ! 1 . Note, Ai is a constant
Then, the distribution functionF of the variableX = X1 + X2

in the positive tail can be approximated by 2 cases
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Case 1 When�1 = �2 we say that the random variables are
�rst-order similar and we set� = �1 = �2 andF satis�es

1 � F(x) = Pr f X > xg � (A1 + A2)x� �

Case 2 When�1 6= �2 we set� = min( �1; �2) and F satis�es

1 � F(x) = Pr f X > xg � Ax� �

whereA is the corresponding constant
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ˆ As a consequence, if two random variables areidentically
distributed, the distribution function of the sum (Case 1)
will be given by

Prf X1 + X2 > xg � 2Ax� �

ˆ Hence the probability doubles when we combine two
observations from di�erent days

ˆ But if one observations comes from a fatter tailed
distribution than the other, then only the heavier tail
matters (Case 2)
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Time scaling

Theorem (de Vries 1998) SupposeX has �nite variance
with a tail index� > 2. At a constant risk levelp, increasing
the investment horizon from 1 toT periods increases the VaR
by a factor:

T 1=�

Note, EVT distributions retain the same tail index for longer
period returns
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ˆ Recall from chapter 4, under Basel Accords, �nancial
institutions are required to calculate VaR for a 10-day
holding periods

ˆ The rules allow the 10-day VaR to be calculated by
scaling the one-day VaR by

p
10

ˆ The theorem shows that the scaling parameter is slower
than the square-root-of-time adjustment

ˆ Intuitively, as extreme values are more rare, they should
aggregate at a slower rate than the normal distribution

ˆ For example, if� = 4, 101=� = 1:78, which is less thanp
10 = 3:16
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VaR and the time aggregation of fat tail
distributions

Risk level 5% 1% 0:5% 0:1% 0:05% 0:005%
Extreme value

1 Day 0.9 1.5 1.7 2.5 3.0 5.1
10 Day 1.6 2.5 3.0 4.3 5.1 8.9

Normal
1 Day 1.0 1.4 1.6 1.9 2.0 2.3
10 Day 3.2 4.5 4.9 5.9 6.3 7.5
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ˆ For one-day horizons, we see that in general EVT VaR is
higher than VaR under normality, especially for more
extreme risk levels

ˆ This is balanced by the fact that 10-day EVT VaR is less
than the normal VaR

ˆ This seems to suggest that the square-root-of-time rule
may be su�ciently prudent for longer horizons

ˆ It is important to keep in mind that� root rule (de Vries)
only holdsasymptotically
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Time Dependence
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Time dependence

ˆ Recall the assumption of IID returns in the section on
EVT, which suggests that EVT may not be relevant for
�nancial data

ˆ Fortunately, wedo not need an IID assumption, since
EVT estimators are consistent and unbiased even in the
presence of higher moment dependence

ˆ We can explicitly model extreme dependence using the
extremal index
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Example

ˆ Let us consider extreme dependence in a MA(1) process:

Yt = Xt + � Xt � 1 j� j < 1

ˆ Let Xt andXt � 1 be IID such that Prf Xt > xg ! Ax� � as
x ! 1 . Then by Feller's theorem

Prf Yt � xg � (1 + � � )Ax� � asx ! 1

ˆ Dependence enters\linearly" by means of the coe�cient
� � . But the tail shape is unchanged

ˆ This example suggest that time dependence has same
e�ect as having an IID sample with fewer observations
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ˆ Suppose we record each observation twice:

Y1 = X1; Y2 = X1; Y3 = X2; :::

ˆ And it increases the sample size toD = 2T . Let us
de�ne MD � max(Y1; :::;YD ). Evidently from
Fisher-Tippet and Gnedenko theorem:

Prf MD � xg = FT (x) = F
D
2 (x)

supposingaT = 0 and bT = 1
ˆ The important result here is thatdependence increases

the probability that the maximum is below threshold x
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Extremal index

Extremal index  It is a measure of tail dependence and
0 <  � 1

ˆ If the data areindependentthen we get

Prf MT � xg ! e� x � �
asT ! 1

whenaT = 0 and bT = 1
ˆ If the data aredependent, the limit distribution is

Prf MD � xg !
�

e� x � �
�  

= e�  x � �
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ˆ 1
 is a measure of thecluster sizein large samples, for
double-recorded data = 1

2

ˆ For the MA(1) process in the previous example, we obtain
the following

Pr
n

T � 1
� MD � x

o
! exp

�
�

1
1 + � �

x� �

�

where = 1
1+ � �
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Dependence in ARCH

ˆ Consider the normal ARCH(1) process:

Yt = � t Zt

� 2
t = ! + � Y 2

t � 1

Zt � N (0; 1)

ˆ Subsequent returns are uncorrelated but arenot
independent, since

Cov(Yt ; Yt � 1) = 0

Cov(Y 2
t ; Y 2

t � 1) 6= 0
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ˆ Even whenYt is conditionally normally distributed, we
noted in chapter 2 that the unconditional distribution of
Y is fat tailed

ˆ de Haan et al. show that the unconditional distribution of
Y is given by

�
�

�
2

+
1
2

�
=

p
� (2� )� �=2
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Extremal index for ARCH(1) { Example

ˆ Extremal index for the ARCH(1) process can be solved
using the previous equation

ˆ From the table below, we see that the higher the� , the
fatter the tails and the higher the level of clustering

� 0:10 0:50 0:90 0:99
� 26:48 4:73 2:30 2:02
 0:99 0:72 0:46 0:42

ˆ Similar results can be obtained for GARCH
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When does dependence matter?

ˆ The importance of extreme dependence and the extremal
index depends on the underlying applications

ˆ Dependence can beignoredif we are dealing with
unconditional probabilities

ˆ And dependencematterswhen calculatingconditional
probabilities

ˆ For many stochastic processes, including GARCH, the
time between tail events become increasingly independent
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Example { S&P 500 index extremes
From 1970 to 2015, 1% events

1980 1990 2000 2010
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0%

5%

10%
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Example { S&P 500 index extremes
From 1970 to 2015, 0.1% events

1980 1990 2000 2010

-10%

-5%

0%

5%
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Example { S&P 500 index extremes
0.1% events during the crisis

Sep 08 Nov 08 Jan 09 Mar 09
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