Financial Risk Forecasting

Chapter 4

Risk Measures

Jon Danielsson ©2020
London School of Economics

To accompany
Financial Risk Forecasting
www.financialriskforecasting.com
Published by Wiley 2011
Version 5.0, August 2020
The focus of this chapter is on

• Defining and measuring risk
  • Volatility
  • VaR (Value-at-Risk)
  • ES (Expected Shortfall)

• Holding periods

• Scaling and the square-root-of-time
Notation

\[ p \quad \text{Probability} \]
\[ Q \quad \text{Profit and loss} \]
\[ q \quad \text{Observed profit and loss} \]
\[ w \quad \text{Vector of portfolio weights} \]
\[ X \quad \text{and} \quad Y \quad \text{Refer to two different assets} \]
\[ \varphi(.) \quad \text{Risk measure} \]
\[ \vartheta \quad \text{Portfolio value} \]
Defining Risk
General Definition

- No universal definition of what constitutes risk
- On a very general level, financial risk could be defined as "the chance of losing a part or all of an investment"
- Large number of such statements could equally be made, many of which would be contradictory
Which asset do you prefer?

All three assets have volatility one and mean zero
Which asset do you prefer?

All three assets have volatility one and mean zero.
Which asset do you prefer?

All three assets have volatility one and mean zero.
Which asset do you prefer?

- *Standard mean variance analysis* indicates that all three assets are equally risky and preferable.
- Since we have the same mean:
  \[ E(A) = E(B) = E(C) = 0 \]
- And the same volatility:
  \[ \sigma_A = \sigma_B = \sigma_C = 1 \]
- If one uses mean variance analysis one is indifferent between all three.
Which asset is preferred by MV?

- If, however, one asks anybody which asset they would prefer, they probably would have a personal preference for one

- The most popular speculative financial asset in the world is inverted $C$ — lottery tickets
So what happened?

- The model — mean variance — comes with a set of assumptions that are beneficial for creating a practical investment model.
- But at the same time inconsistent with people’s risk preference.
- Oftentimes that is not important.
- But sometimes it is.
- Recall “all models are wrong, some models are useful.”
What is risk?

Value–at–Risk

Issues

Coherence

Manipulation

ES

Scaling

Regulations

Mean $A = \frac{1}{3}$, mean $B = \frac{2}{3}$, mean $B = 1$
What is risk?

• Because all three assets still have the same volatility
• But the mean of \( C \) is highest, mean variance tells us to pick \( C \)
• However, most people would pick one of these using some criteria private to them
Three investment choices

- Suppose Yiying, Alvaro and Mary all have the same amount of money to invest
- All have access to the same investment technology (All have taken FM442)
- All are contemplating putting $1 million into Amazon
  **Yiying** is a day trader, aiming to buy and sell within a week
  **Alvaro** is a fund manager, and his bonuses depend on quarterly performance
  **Mary** is 22 years old, planning to retire in 40 years and expects to die in 70. She is saving for her pension that needs to be available when she’s 90 years old and far from able to manage her own money
Their choices

- While faced with same technology, their preferences are different
- And consequently they will evaluate the three investment choices A, B, C differently
- Mary will unequivocally pick C
- It’s quite possible Yiying does as well because she would not be a day trader if she didn’t like risk
- Alvaro would pick A or B, probably the latter
Which asset is “better”? 

• There is no obvious way to discriminate between the assets 

• One can try to model the *underlying distribution* of market prices and returns of assets, but it is generally unknown. 
  
  • can identify by maximum likelihood methods 
  • or test the distribution against other other distributions by using methods such as the Kolmogorov-Smirnov test

• Practically, it is impossible to accurately identify the distribution of financial returns
Risk is a latent variable

- Financial risk is cannot be measured directly
- Risk has to be *inferred* from the behavior of observed market prices
  - e.g. at the end of a trading day, the return of the day is known while the risk is unknown
Risk measure and risk measurement

**Risk measure** a mathematical concept of risk

**Risk measurement** a number that captures risk, obtained by applying data to a risk measure
Volatility

- Volatility is the *standard deviation of returns*
- Main measure of risk in most financial analysis
- It is a *sufficient* measure of risk when returns are *normally distributed*
  - For this reason, in mean-variance analysis the efficient frontier shows the best investment decision
  - If returns are not normally distributed, solutions on the efficient frontier may be inefficient
Volatility

- The assumption of *normality of return is violated* for most if not all financial returns
  - See Chapter 1 on the non-normality of returns
- For most applications in financial risk, volatility is likely to systematically *underestimate risk*
Value–at–Risk (VaR)
History

- Until 1994, the only risk measure was volatility
- Then the JP Morgan bank proposed a risk measure called Value-at-Risk and a method to measure it, called Riskmetrics, what we now call EWMA
- Why would JP Morgan do that — to be able to reduce its level of capital
- It used to be called the 4\textsuperscript{15} report because it was created because the chairman of the bank wanted a single measurement of the bank’s risk in time for the treasury meeting at 4:15 PM
**Definition: Value-at-Risk.** The loss on a trading portfolio such that there is a probability $p$ of losses equaling or exceeding VaR in a given trading period and a $(1 - p)$ probability of losses being lower than the VaR.

- The most common risk measure after volatility
- It is *distribution independent* in theory, but not in practice
Quantiles and P/L

- VaR is a *quantile* on the distribution of P/L (profit and loss)
- We indicate the P/L on an investment portfolio by the random variable $Q$, with a realization indicated by $q$
- In the case of holding *one unit* of an asset, we have

$$Q_t = P_t - P_{t-1}$$

- More generally, if the portfolio value is $\vartheta$:

$$Q_t = \vartheta Y_t = \vartheta \frac{P_t - P_{t-1}}{P_{t-1}}$$

- That is, the P/L is the portfolio value ($\vartheta$) multiplied by the returns
VaR and P/L density

• The density of P/L is denoted by $f_q(.)$, then VaR is given by:

$$\Pr[Q \leq - \text{VaR}(p)] = p$$

or,

$$p = \int_{-\infty}^{-\text{VaR}(p)} f_q(x) \, dx$$

• We usually write it as $\text{VaR}(p)$ or $\text{VaR}^{100 \times p\%}$
  - for example, $\text{VaR}(0.05)$ or $\text{VaR}^{5\%}$
Is VaR a negative or positive number?

- VaR can be stated as a negative or positive number
- Equivalently, probabilities can be stated as close to one or close to zero – for example, VaR(0.95) or VaR(0.05)
- We take the more common approach of referring to VaR as a *positive number* using *low-probability terminology* (e.g. 5%)
- However, almost nobody is able to be consistent, I certainly not, and I will use 5% and 95% VaR interchangeably
What is risk?

Value–at–Risk

Issues Coherence Manipulation ES Scaling Regulations

VaR graphically

Density of profit and loss

Losses Profits
What is risk?

Value-at-Risk

Issues

Coherence

Manipulation

ES

Scaling

Regulations

VaR graphically

Density zoomed in

−3.0 −2.8 −2.6 −2.4 −2.2 −2.0 −1.8 −1.6

0.00 0.05 0.10 0.15

−VaR 1%

−VaR 5%

p=1%

p=5%
VaR graphically

Cumulative distribution of profit and loss
What is risk?

Value–at–Risk

Issues

Coherence

Manipulation

ES

Scaling

Regulations

VaR graphically

Cumulative distribution zoomed in
Example

• The commodities’ trading book is worth £1 billion and daily VaR\(^{1\%}\) = £10 million

• This means we expect to loose £10 million or more once every 100 days, or about once every 5 months
The three steps in VaR calculations

1. The *probability* of losses exceeding VaR, $p$
2. The *holding period*, the time period over which losses may occur
3. The *probability distribution* of the P/L of the portfolio
Which probability should we use?

- VaR levels of 1% – 5% are very common in practice
- Regulators (Basel II) demand 1%
- But less extreme numbers, such as 10% are often used in risk management on the trading floor
- More extreme lower numbers, such as 0.1%, may be used for applications like economic capital, survival analysis or long-run risk analysis for pension funds
Holding period

- The *holding period* is the time period over which losses may occur
  - it is usually one day
  - can be minutes or hours
  - or several days, but it does not make sense to use more than 2 weeks, and even that is on the high side
- Holding periods can vary depending on different circumstances
- Many proprietary trading desks focus on intraday VaR
- For institutional investors and nonfinancial corporations, it is more realistic to use longer holding periods
Probability distribution of P/L

- The identification of the probability distribution is difficult
- The standard practice is to estimate the distribution by using past observations and a statistical model
- We will use EWMA and GARCH later
VaR and normality

- VaR *does not* implies normality of returns, we can use any distribution in calculating VaR.
- Even if I am often surprised by people who assume it does.
- However, the most common distribution assumption for returns in the calculation of VaR is *conditional* normality.
  - In this case, volatility provides the same information as VaR. Why?
Sign of VaR

- If the mean of the density of P/L is sufficiently large, the probability $p$ quantile (the VaR), might easily end up on the other side of zero.
- This means that the relevant losses have become profits.
- In such situations we either specify a more extreme $p$ or use a different measure of risk.
Sign of VaR

\[ f(q) \]
Sign of VaR

\[ f(q) \]

\[ \text{suppose mean is bigger} \]

\[ -\text{VaR}^{5}\% \quad \mu = 0 \]
Sign of VaR

Suppose mean is bigger
Sign of VaR

Note that $-\text{VaR}$ is now positive
Issues in applying VaR
Main issues in the implementation

1. VaR is only a quantile on the P/L distribution
2. VaR is not a coherent risk measure
3. VaR is easy to manipulate
VaR is only a quantile

- VaR gives the “best of worst case scenarios” and, as such, it inevitably underestimates the potential losses associated with a probability level
- I.e. VaR($p$) is incapable of capturing the risk of extreme movements that have a probability of less than $p$
- If VaR=$1000$, are potential losses $1001$ or $10000000$?
- The shape of the tail before and after VaR need not have any bearing on the actual VaR number
VaR in unusual cases

\[ f(q) \]

\[ -\text{VaR}^{5\%} \]

\[ q \]
VaR in unusual cases

\[ f(q) \]

\[ -\text{VaR}^{5\%} \quad 0 \quad q \]

\[ f(q) \]

\[ -\text{VaR}^{5\%} \quad 0 \quad q \]
VaR in unusual cases

\[ f(q) \]

\[ -\text{VaR}^{5\%} \quad 0 \quad q \]

\[ f(q) \]

\[ -\text{VaR}^{5\%} \quad 0 \quad q \]

\[ f(q) \]

\[ -\text{VaR}^{5\%} \quad 0 \quad q \]
VaR in unusual cases

\[ f(q) \]

\[ -\text{VaR}^{5\%} \quad 0 \quad q \]

\[ f(q) \]

\[ -\text{VaR}^{5\%} \quad 0 \quad q \]
Ideal properties of a risk measure

- The ideal properties of any financial risk measure were proposed by Artzner et. al (1999)
- To them, coherence is ideal
- Other authors have added more “ideal conditions”
- While others have dismissed the importance of some of these
Coherence

• Suppose we have two assets, $X$ and $Y$
• Denote some arbitrary risk measure by $\varphi(\cdot)$. It could be volatility, VaR or something else
• $\varphi(\cdot)$ is then some function that maps some observations of an asset, like $X$, onto a risk measurement
• Further define some arbitrary constant $c$
• We say that $\varphi(\cdot)$ is a coherent risk measure if it satisfies the following four axioms
  1. Monotonicity
  2. Translation invariance
  3. Positive homogeneity
  4. Subadditivity
Monotonicity

- If
  \[ X \leq Y \]
- and
  \[ \varphi(X) \geq \varphi(Y) \]
- Then risk measure \( \varphi \) satisfies monotonicity
- What this means is that if outcomes for asset \( X \) are always more negative than outcomes for \( Y \)
  - suppose \( X \) and \( Y \) are daily returns on AMZN and GOOG, and the returns on GOOG are always higher than for AMZN, then GOOG risk is lower than that of AMZN
- Then the risk of \( Y \) should never exceed the risk of \( X \)
- This is perfectly reasonable and should always hold
Translation invariance

- If \( \varphi(X + c) = \varphi(X) - c \)
- Then risk measure \( \varphi \) satisfies translation invariance
- In other words, if we add a positive constant to the returns of AMZN then the risk will go down by that constant
- This is perfectly reasonable and should always hold
Positive homogeneity

- If \( c > 0 \) and

\[
\varphi(cX) = c\varphi(X)
\]

- Then risk measure \( \varphi \) satisfies positive homogeneity

- Positive homogeneity means risk is \textit{directly proportional} to the value of the portfolio

- For example, suppose a portfolio is worth $1,000 with risk $10, then doubling the portfolio size to $2,000 will double the risk to $20
• As relative shareholdings increase, the risk may increase more rapidly than the portfolio size

• In this case, *positive homogeneity is violated*: 

$$\varphi(cX) > c\varphi(X)$$

• This is because when we are trying to sell, the price of the stock falls, therefore the eventual selling price is lower than the initial market price
  - See chapter 10, Endogenous risk
Subadditivity

- If

\[ \phi(X + Y) \leq \phi(X) + \phi(Y) \]

- Then risk measure \( \phi \) satisfies Subadditivity
- Subadditivity means a portfolio of assets is measured as less risky than the sum of the risks of individual assets
- That is, \textit{diversification reduces risk}
Volatility is subadditive

• Recall how portfolio variance is calculated when we have two assets
• \( X \) and \( Y \), with volatilities \( \sigma_X \) and \( \sigma_Y \), respectively, correlation coefficient \( \rho \) and portfolio weights \( w_X \) and \( w_Y \)
• The portfolio variance is:

\[
\sigma_{\text{portfolio}}^2 = w_X^2 \sigma_X^2 + w_Y^2 \sigma_Y^2 + 2w_X w_Y \rho \sigma_X \sigma_Y
\]
• Rewriting, we get

\[ \sigma^2_{\text{portfolio}} = (w_X \sigma_X + w_Y \sigma_Y)^2 - 2w_X w_Y (1 - \rho) \sigma_X \sigma_Y \]

where the last term is positive

• \( W_X, W_Y \geq 0, -1 \leq \rho \leq 1 \)

• Volatility is therefore \textit{subadditive} because:

\[ \sigma_{\text{portfolio}} \leq w_X \sigma_X + w_Y \sigma_Y \]
VaR can violate subadditivity

- Asset $X$ has probability of 4.9% of a return of -100, and 95.1% of a return of 0
- Hence we have

$$\text{VaR}^{5\%}(X) = 0$$
$$\text{VaR}^{1\%}(X) = 100$$
• Consider another asset $Y$, *independent* of $X$ and with the *same distribution* as $X$

• Suppose we hold an equally weighted portfolio of assets $X$ and $Y$, the 5% VaR of the portfolio is

$$\text{VaR}^{5\%}_{\text{portfolio}} = \text{VaR}^{5\%}(0.5X + 0.5Y) = 50$$

<table>
<thead>
<tr>
<th>Outcome</th>
<th>$X$</th>
<th>$Y$</th>
<th>$\frac{1}{2}X + \frac{1}{2}Y$</th>
<th>Probability</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-100</td>
<td>-100</td>
<td>-100</td>
<td>0.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td>2</td>
<td>-100</td>
<td>0</td>
<td>-50</td>
<td>4.7%</td>
<td>4.9%</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-100</td>
<td>-50</td>
<td>4.7%</td>
<td>9.6%</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>90.4%</td>
<td>100%</td>
</tr>
</tbody>
</table>
• In this case, $\text{VaR}^{5\%}$ violates subadditivity

$$\text{VaR}^{5\%}_{\text{portfolio}} > 0.5 \text{VaR}^{5\%}(X) + 0.5 \text{VaR}^{5\%}(Y) = 0$$

• This is because the probability of a loss (4.9\%) of a single asset is slightly smaller than the VaR probability (5\%)
• While the portfolio probability is higher than 5\%
Does VaR really violate subadditivity?

- VaR is subadditive in the special case of normally distributed returns.
- Subadditivity for the VaR is violated when the tails are super fat:
  - For example a Student-t where the degrees of freedom are less than one.
  - Imagine you go to a buffet restaurant where you suspect one of the dishes might give you food poisoning.
  - Then the optimal strategy is only to eat one dish, not to diversify.
- Most assets do not have super fat tails, this includes most equities, exchange rates and commodities.
• VaR of assets that are subject to occasional very large negative returns tends to suffer subadditivity violations, e.g.
  • Exchange rates in countries that peg their currency but are subject to occasional devaluations
  • Electricity prices subject to very extreme price swings (see next page)
  • Junk bonds where most of the time the bonds deliver a steady positive return
  • Short deep out of the money options
Houston power prices

Prices

Simple returns

0%
500%
1000%
1500%
2000%
2500%
3000%
2012 2014 2016 2018 2020

2500%
2000%
1500%
1000%
500%
0%
2012 2014 2016 2018 2020
Manipulating VaR

- VaR is easily it can be manipulated, perhaps to make the VaR measurement lower without risk it self falling
- There are many ways to do this, for example
  1. cherry pick assets that make a VaR measure low
  2. particular derivative trading strategies
Cherry pick assets

- Suppose a trader manages an equity portfolio worth $100 million
- Where the VaR=$10 million
- And then her boss says “Can you reduce the VaR without getting caught violating any rules”?
- Easy, ask the computer to search for stocks that give the same expected return, but lower VaR
- You can easily do that with the CRSP stocks
London Whale

- JP Morgan bank in 2013
- VaR for the “chief investment office” division exceeded $95 million
- Total target VaR for the entire bank was $125 million
- Person in charge of the VaR sent an email from a yahoo account to his colleagues with the subject “Optimizing regulatory capital”
- JP Morgan’s lost $5.8 billion
- J.P. Morgan’s quarterly securities filing: “This portfolio has proven to be riskier, more volatile and less effective as an economic hedge than the firm previously believed”
When all you need is a number

• A friend of mine, Rupert Goodwin, sold living selling risk systems
• One day he went to a bank that had just been audited by the local financial authority
• The regulator came in and asked the risk manager if he used a risk model
• When the risk manager said yes, the regulator ticked off a box and left
Suppose the VaR before any manipulation is $\text{VaR}_0$ and that a bank prefers the VaR to be $\text{VaR}_1$

Where, $0 < \text{VaR}_1 < \text{VaR}_0$
Suppose the VaR before any manipulation is $\text{VaR}_0$ and that a bank prefers the VaR to be $\text{VaR}_1$

Where, $0 < \text{VaR}_1 < \text{VaR}_0$
This can be achieved by

1. buying put with a strike above $\text{VaR}_1$
2. writing a put option with a strike price below $\text{VaR}_0$

This will result a lower expected profit

- the fee from writing the option is lower than the fee from buying the option

And an increase in downside risk

- because it the potential for large losses (makes the tail fatter)

While this may be an obvious manipulation

It can be very hard to identify in the real world
Expected Shortfall (ES)
Expected Shortfall (ES)

- A large number of other risk measures have been proposed
- The only one to get traction is ES
- It is known by several names, including
  1. ES
  2. Expected tail loss
  3. Tail VaR
**Definition: Expected shortfall.** Expected loss conditional on VaR being violated (i.e. expected P/L, \( Q \), when it is lower than negative VaR)

\[
ES = - \mathbb{E}[Q | Q \leq - \text{VaR}(p)]
\]

- ES is an alternative risk measures to VaR which overcomes the problem of subadditivity violation
- It is aware of the shape of the tail distribution while VaR is not
ES and VaR for profit/loss outcomes

Density of P/L and VaR

the shaded area is 0.05
ES and VaR for profit/loss outcomes

Left tail of the density

Take expectation over the shaded area
ES and VaR for profit/loss outcomes

Blow up the tail

Scale tail area up to 1
Expected Shortfall

- ES

\[ ES = \int_{-\infty}^{-\text{VaR}(p)} x f_{\text{VaR}}(x) \, dx \]

- The tail density, \( f_{\text{VaR}}(.) \) is given by:

\[ 1 = \int_{-\infty}^{-\text{VaR}(p)} f_{\text{VaR}}(x) \, dx = \frac{1}{p} \int_{-\infty}^{-\text{VaR}(p)} f_q(x) \, dx \]
Under the standard normal distribution

- If the portfolio value is 1, then:

\[ ES = -\frac{\phi(\Phi^{-1}(p))}{p} \]

where \( \phi \) and \( \Phi \) are the normal density and distribution, respectively.

- VaR and ES for different levels of confidence for a portfolio with a face value of $1 and normally distributed P/L with mean 0 and volatility 1:

<table>
<thead>
<tr>
<th>p</th>
<th>0.5</th>
<th>0.1</th>
<th>0.05</th>
<th>0.025</th>
<th>0.01</th>
<th>0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>VaR</td>
<td>0</td>
<td>1.282</td>
<td>1.645</td>
<td>1.960</td>
<td>2.326</td>
<td>3.090</td>
</tr>
<tr>
<td>ES</td>
<td>0.798</td>
<td>1.755</td>
<td>2.063</td>
<td>2.338</td>
<td>2.665</td>
<td>3.367</td>
</tr>
</tbody>
</table>
Pros and cons

Pros
- ES in *coherent* and VaR is not
- It is *harder to manipulate* ES than VaR

Cons
- See next slides
Measurement

- To calculate ES we first have to know VaR and then integrate over the tail from VaR to minus infinity
- That means in practice that we need more calculations for ES than VaR
- And that the estimation error multiplies
Backtesting

• We discussed backtesting in chapter 8
• Backtesting is a technique for evaluating the quality of a risk forecast model
• As it turns out, it is much harder to backtest ES because it requires estimates of the tail expectation to compare with the ES forecast
• While VaR can be compared to actual market outcomes
Holding Periods, Scaling and the Square–Root–of–Time
Length of holding periods

- In practice, *the most common holding period is daily*
- Shorter holding periods are common for risk management on the trading floor
  - where risk managers use hourly, 20-minute and even 10 minute holding periods
  - this is technically difficult because intraday data has complicated diurnal patterns
Longer holding periods

- Holding periods exceeding one day are also demanding
  - the effective date the sample becomes much smaller
  - one could use scaling laws
- Most VaR forecasts require at least a few hundred observations to estimate risk accurately
- For a 10-day holding period will need at least 3,000 trading days, or about 12 years
- In most cases data from 12 years ago are fairly useless
Scaling laws

- If data comes from a particular stochastic process it may be possible to use VaR estimates at high frequency (e.g. daily) and scale them up to lower frequencies (e.g. biweekly).
- This would be possible because we know the stochastic process and how it aggregates.
- That is not usually the case.
Variances, IID and square-root-of-time scaling

• Suppose we observe an IID random variable \( \{X_t\} \) with variance \( \sigma^2 \) over time
  • The variance of the sum of two consecutive \( X \)'s is then:

\[
\text{Var}(X_t + X_{t+1}) = \text{Var}(X_t) + \text{Var}(X_{t+1}) = 2\sigma^2
\]

• The scaling law for variances is time
• It is the same for the mean
• While the scaling law for standard deviations (volatility) is square root of time
• This holds regardless of the underlying distribution (provided the variance is defined)
Square-root-of-time scaling

- The square-root-of-time rule applies to volatility when data is IID.
- It does not apply when data is not IID, like GARCH.
- This rule applies to volatility regardless of the underlying distribution provided that the returns are IID.
- For VaR, the square-root-of-time rule only applies returns are IID *normally* distributed.
  - note we need an additional assumption.
- It is possible to derive the scaling law for IID fat tailed data.
Regulations
The importance of regulations

- VaR was developed in response to financial regulations
- And its primary use is in regulated institutions
- Over time, it has become a fundamental part in how we monitor financial institutions
- And individuals working inside them
Regulations

- All financial institutions are regulated
- Banks are regulated under the Basel Accords
- Determined by the Basel Committee (Under G20)
- G20 Countries commit themselves to implementing the Basel Accords
- Most other countries also follow the Basel regulations, necessary if we want to be a full member of the global financial community
Basel Accords

- The Basel committee is a committee of G20 countries
- It maintains a secretariat in the Bank for International Settlements — The central banks central bank — located in Basel Switzerland
- It sets global risk for banks
- VaR has been a part of those since 1998 (Basel I)
- Basel II has been (sort of) in effect since in 2008
- Basel III is being implemented in stages now
Basel Accords

• Three main risk factors
  1. trading book
  2. banking book (loans and the like)
  3. operational risk (IT/cyber/rouge trader/etc)

• Financial institutions regulated under the Basel II Accords are required to set aside a certain amount of capital due to *market risk*, *credit risk* and *operational risk*

• Our focus here is on trading book
Basel II

- Banks are required to measure market risk with VaR^{99\%} with ten-day holding periods
- They are allowed to use the square-root-of-time rule
- That is, measure daily holding period VaR and multiply it by $\sqrt{10}$
Trading book

- Capital is obtained from multiplying the maximum of previous day 1% VaR and 60 days average VaR (\(\overline{\text{VaR}}_{t}^{1\%}\)) by a multiplicative constant, \(M_{t}\)
- Which is determined by the number of violations that happened previously
- With an additional constant \(C_{t}\) also added

\[
\text{Market risk capital}_{t} \geq M_{t} \max \left( \text{VaR}_{t}^{1\%}, \overline{\text{VaR}}_{t}^{1\%} \right) + C_{t}
\]

- \(C_{t}\) is determined by the authorities based on the subjective judgment of what additional capital might be needed
• VaR$^{1\%}_t$ is average reported 1% VaR over the previous 60 trading days

• The multiplication factor $M_t$ varies with the number of violations, $v_1$, that occurred in the previous 250 trading days — the required testing window length for backtesting in the Basel Accords.

• This is based on three ranges for the number of violations, named after the three colors of traffic lights:

$$M_t = \begin{cases} 
3, & \text{if } v_1 \leq 4 \text{ (Green)} \\
3 + 0.2(v_1 - 4), & \text{if } 5 \leq v_1 \leq 9 \text{ (Amber)} \\
4, & \text{if } 10 \leq v_1 \text{ (Red)} 
\end{cases}$$
The global crisis in 2008 showed that existing methods for measuring and regulating risk were inadequate.

One area they identified was that the Basel II way of measuring VaR did not capture the risks it was supposed to.

Banks failed even though their VaR suggested they were doing quite well (see UBS on next slide).

In response we got Basel III.

It is a very complicated and I present a highly simplified view of the trading book regulations.
The case of UBS — Bailed out in 2008

- $19 billion in losses on CDOs composed of U.S. subprime mortgages
- UBS did not realize that the CDOs were risky
- Use VaR to measure the risk — exactly the wrong type of risk measurement methodology
- The UBS risk managers opted for riskometers tailor designed not to capture subprime mortgage risk
- Fed into the calculations of the bank’s overall riskiness and was dutifully reported to senior management and the authorities
- None of them was concerned, and neither were their auditors, Ernst & Young
- UBS lost sight of the fact that when it thought it was fooling the regulators, it was just fooling itself
Basel III trading book

- Measure market risk with \( ES^{97.5\%} \)
- Use various holding periods (that is, losses that can happen over multiple different time periods)
- Use a stressed ES
- That is, identify the highest ES in the previous few years for the same asset/portfolio
- And use the maximum of the stressed ES, or the actual ES on a day to determine the regulatory ES for the day