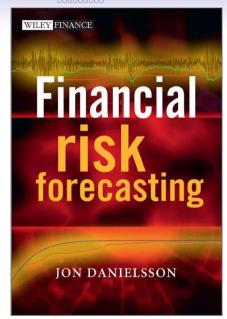
# Financial Risk Forecasting Chapter 8 Backtesting And Stresstesting

Jon Danielsson ©2025 London School of Economics

To accompany
Financial Risk Forecasting
FinancialRiskForecasting.com
Published by Wiley 2011
Version 10.0, August 2025



# **Backtesting And Stresstesting**

#### Introduction

- When making a risk forecast (or any type of forecast)
- It is important to validate the forecast

Ex post: validation after the forecast is made — using *operational criteria*Ex ante: validation before observing outcomes — based on theory, design, or past performance

- VaRs are only observed infrequently, a long period of time would be required
- Backtesting evaluates VaR forecasts by checking how a VaR forecast model performs over a period in the past – in-sample

#### Why Backtesting Isn't Foolproof

- While the idea of a backtest sounds good in theory, there are serious issues in practice
- We will return to this later after we have covered backtesting
- The fundamental issue is that the analyst conducting the backtest has knowledge of future outcomes
- And therefore can adjust the forecast to perform too well
- In other words...
- The modeller knows the outcomes and can tweak the forecast to perform suspiciously well

#### The Focus of This Chapter

- Backtesting
- Application of backtesting
- Significance of backtests
  - Bernoulli coverage test
  - Testing the independence of violations
  - Joint test
- Expected shortfall backtesting
- Problems with backtesting
- Stress testing

#### Notations new to this chapter

```
W_T Testing window size T=W_E+W_T Number of observations in a sample \eta Indicates whether a violation occurs v Count of violations
```

#### **Learning outcomes**

- 1. Understand the difference between operational evaluation and backtesting
- 2. Know why backtesting is important
- 3. Know the concept of violations
- **4.** Know the concept of the violation ratio
- 5. Understand how to implement tests of violation ratios
- **6.** Be able to implement backtesting in R
- 7. Know the basic problems of backtesting ES

# **Backtesting**

#### What Is Backtesting?

- Backtesting evaluates whether risk forecasts perform well out of sample
- We compare model-predicted VaR with actual realised returns
- Procedure to compare various risk models, ex ante (that is in-sample)
- Take ex ante VaR forecasts from a particular model and compare them with ex
  post realised return (that is, historical observations)
- A loss exceeding VaR is called a VaR violation it signals a forecast failure
- Whenever losses exceed VaR, a VaR violation is said to have occurred
- Can analyse violations in various ways

#### **Machine Learning Comparison**

- Learn to forecast risk out-of-sample in a training sample
- Evaluate model in testing sample
- Conceptually similar to what we do here
- Except we use specific models instead of (mostly) unsupervised learning
- Unlike machine learning models, which are often data-driven and flexible, our risk models are structured and interpretable
- When we know a lot about underlying stochastic process, will perform better
- Especially when samples are as small as in our case
- If we know the underlying data-generating process, traditional models may outperform black-box methods

## **Elicitability: What Can Be Backtested?**

- A risk measure is elicitable if it can be evaluated using a scoring (or loss) function
- This allows forecasters to be rewarded for accuracy and penalised for error
- VaR is elicitable:
  - A binary scoring rule: did the loss exceed the VaR threshold?
- ES is not elicitable on its own:
  - No scoring function uniquely incentivises correct ES forecasts
  - Makes standard backtesting and model comparison difficult

#### Forecasting VaR: Example

- Imagine you have ten years of data, from 2014 to 2023
- And using the first two years of that
- To forecast risk for 1 January 2016

# Forecasting VaR: Example (Cont.)

- The 500 trading days in 2014 and 2015 constitute the first estimation window
- W<sub>E</sub> is then moved up by one day to obtain the risk forecast for the second day of 2014, etc.

| Start      | End        | VaR forecast    |
|------------|------------|-----------------|
| 1/1/2014   | 31/12/2015 | VaR(1/1/2016)   |
| 2/1/2014   | 1/1/2016   | VaR(2/1/2016)   |
| :          | i          | :               |
| 31/12/2022 | 30/12/2023 | VaR(31/12/2023) |

#### **Usefulness of Backtesting**

- Identifying the weaknesses of risk forecasting methods
- Hence providing avenues for improvement
  - Not very informative about the causes of weaknesses
- Models that perform poorly during backtesting should be questioned
  - 1. Model assumptions
  - 2. Parameter estimates
- Backtesting can prevent underestimation and overestimation of risk

#### **Definitions**

Estimation window ( $W_E$ ): the number of observations used to forecast risk; if different procedures or assumptions are compared, the estimation window is set to whichever one needs the highest number of observations

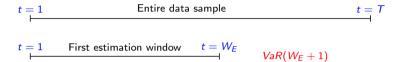
Testing window  $(W_T)$ : the data sample over which risk is forecast (that is, the days where we have made a VaR forecast)

$$T = W_E + W_T$$

#### **Dates and Indices**

- VaR forecasts can be compared with the actual outcome
- The daily 2014 to 2023 returns are already known
- Instead of referring to calendar dates (for example, 1/1/2014), refer to days by indexing the returns, assuming 250 trading days per year:
  - $y_1$  is the return on 1/1/2014
  - $y_{2,500}$  is the return on the last day, 31/12/2023

t=1 Entire data sample t=T



```
t=1 Entire data sample t=T

t=1 First estimation window t=W_E VaR(W_E+1)

t=2 Second estimation window t=W_E+1 VaR(W_E+2)
```

```
t=1 Entire data sample t=T

t=1 First estimation window t=W_E
VaR(W_E+1)

t=2 Second estimation window t=W_E+1
VaR(W_E+2)

t=3 Third estimation window t=W_E+2
VaR(W_E+3)
```

```
t = 1 \qquad \qquad \text{Entire data sample} \qquad \qquad t = T t = 1 \qquad \text{First estimation window} \qquad t = W_E \qquad \qquad VaR(W_E + 1) t = 2 \qquad \text{Second estimation window} \qquad t = W_E + 1 \qquad VaR(W_E + 2) t = 3 \qquad \text{Third estimation window} \qquad t = W_E + 2 \qquad VaR(W_E + 3) \vdots
```

```
Entire data sample
t = 1
                                                             t = T
         First estimation window t = W_E
t = 1
                                          VaR(W_E+1)
   t = 2 Second estimation window t = W_E + 1
                                                VaR(W_E + 2)
      t = 3 Third estimation window t = W_E + 2
                                                   VaR(W_E + 3)
                    t = T - W_E Last estimation window t = T - 1
VaR(T)
```

• The estimation window  $W_E$  is set at 500 days, and the testing window  $W_T$  is therefore 2,000 days

| t     | $t+W_E-1$ | $VaR(t+W_E)$ |
|-------|-----------|--------------|
| 1     | 500       | VaR(501)     |
| 2     | 501       | VaR(502)     |
| ÷     | ÷         | ÷            |
| 1,999 | 2,499     | VaR(2,500)   |

#### What We have Set Up

- We now have a full set of VaR forecasts from a rolling model
- Each forecast corresponds to a specific historical day
- We will now compare forecasts to actual returns and evaluate accuracy
- Key concepts: violations, coverage, independence



#### **VaR Violation**

- If a financial loss on a particular day exceeds the VaR forecast, then the VaR limit
  is said to have been violated
- Define the violation indicator  $\eta_t$
- It equals 1 when the VaR is breached, 0 otherwise.

VaR violation: an event such that

$$\eta_t = \begin{cases} 1, & \text{if } y_t \le -\mathsf{VaR}_t \\ 0, & \text{if } y_t > -\mathsf{VaR}_t. \end{cases}$$

# **Counting Violations**

Count the violations

 $v_1$ 

and non-violations

 $v_{\mathsf{0}}$ 

$$v_1 = \sum_{t=1}^{W_T} \eta_t$$

$$v_0 = W_T - v_1$$

#### **Violation Ratios**

- Over many forecasts, we expect a certain number of violations
- The violation ratio compares what we observed to what we expected
- The observed number of VaR violations are compared with the expected

#### Violation ratio:

$$\mathsf{VR} = \frac{\mathsf{Observed\ number\ of\ violations}}{\mathsf{Expected\ number\ of\ violations}} = \frac{\upsilon_1}{\rho \times W_T}$$

- If the violation ratio is greater than one, the VaR model underforecasts risk
- If smaller than one the model *overforecasts* risk

#### **Estimation Window Length**

- W<sub>E</sub> determined by the choice of VaR model and probability level
- Different methods have different data requirements

```
EWMA About 30 days

HS At least 300 days for VaR(1%)

GARCH 500 or more days
```

# Picking $W_E$

- The estimation window should be sufficiently large to accommodate the most stringent data criteria
- So if comparing EWMA and HS, use at least 300 for both
- Even within the same method, it may be helpful to compare different window lengths
- Maybe compare HS with 300, 500 and 1,000 days
- Or GARCH with 500 and 5,000 days

#### **Testing Window Length**

- VaR violations are infrequent events
- With a 1% VaR, a violation is expected once every 100 days, so that 2.5 violations are expected per year
- So the actual sample size of violations is quite small
- Causing difficulties for statistical inference
- At least 10 violations for reliable statistical analysis, or four years of data
- Preferably more

#### **Violation Ratios**

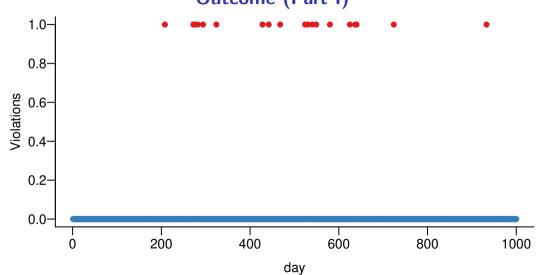
- VR=1 is expected, but how can we ascertain whether any other value is statistically significant?
- A useful rule of thumb
  - If  $VR \in [0.8, 1.2]$ , the model is **good**
  - If  $VR \in [0.5, 0.8]$ , or  $VR \in [1.2, 1.5]$ , the model is *acceptable*
  - If  $VR \in [0.3, 0.5]$ , or  $VR \in [1.5, 2]$ , the model is **bad**
  - If VR<0.3 or VR>2 the model is useless
- Both bounds narrow with increasing testing window lengths
- As a first attempt
  - Plot the actual returns and VaR together
  - And then do a statistical test

# **Simulating Violations**

- Suppose you want to simulate a coin toss in R
- rbinom(prob=0.5,n=1,size=1)
- Probability 50%, one observation and one try
- ullet Suppose the VaR probability is 1% and we want to simulate a testing sample size of thousand days
- rbinom(prob=0.01,n=1000,size=1)

## **How Sample Size Affects the Violation Ratio**

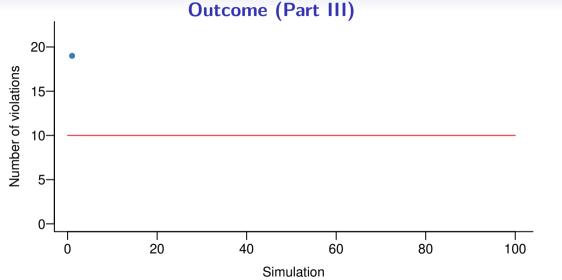
- ullet Small samples o high variability in VR
- ullet Larger samples o VR stabilises near 1
- Confidence bounds get narrower

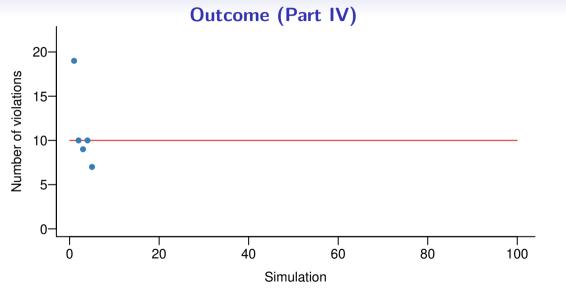


## Outcome (Part II)

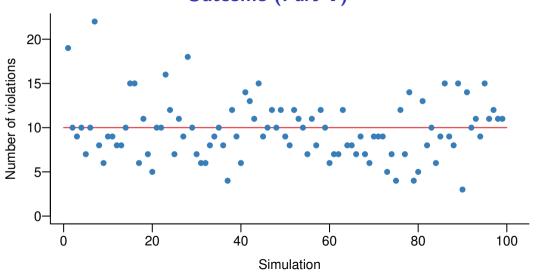
- And the number of violations
- sum(rbinom(prob=0.01,n=1000,size=1))
- Let's repeat that a few times







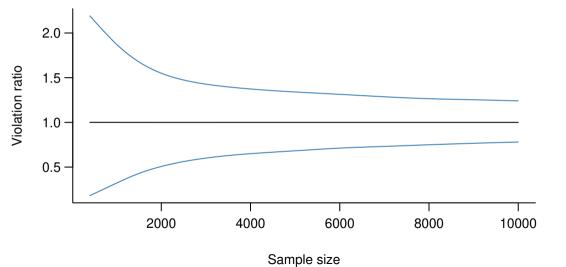




#### **Simulation Estimation of Confidence Bounds**

- By simulating a lot of times, we can construct Monte Carlo confidence bounds
- $\bullet$  By taking the 0.5% and the 99.5% smallest violation ratios for each sample size
- We get the empirical 99% confidence bound

## 99% Empirical Confidence Bounds



So

- Simulating many samples gives us a benchmark for expected variation
- These bounds help assess whether a model's violation ratio is significantly off
- A VR outside the 99% band suggests model failure

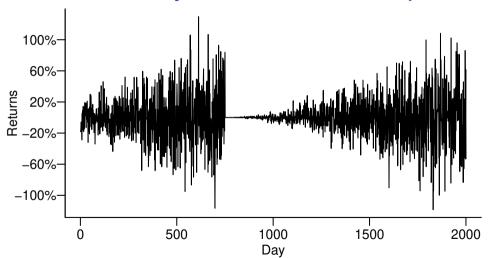
## Application of Backtesting

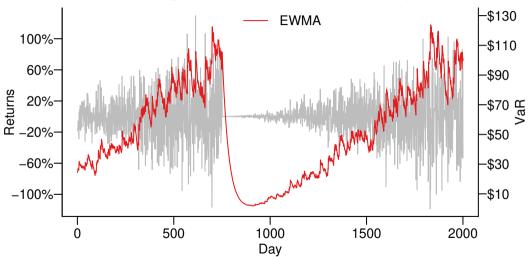
## How Do VaR Models React to Volatility Regimes?

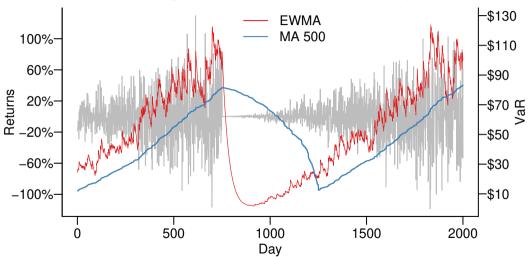
- We compare different VaR models under extreme volatility shifts
- Start with synthetic data that abruptly transitions from high to low volatility
- Then at end of Chapter examine recent real-world crises: 2008, Covid, the Ukraine war and Trump tarrifs
- Goal: observe responsiveness, smoothness and failure patterns

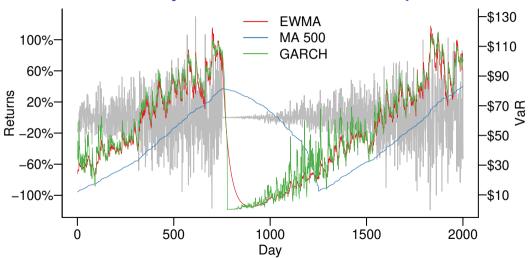
## **Extreme Example**

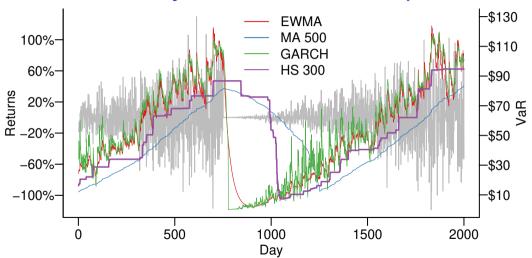
- Start with extreme volatility clusters
- And pay a special attention to how the various methods react to the collapse of volatility to zero

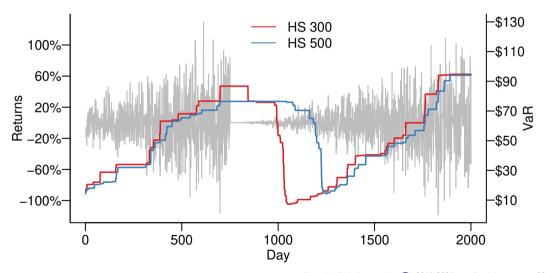












## **Summary Conclusion**

- The worst performing model is MA as it is always behind
- Recall the discussion of the model in Chapter 2
- EWMA is usually quite close to GARCH, but GARCH is more noisy right after the volatility collapsed to zero
- The main reason is that half the sample is in high volatility environment and half in the low

## Significance of Backtests

Peter Christoffersen, 1998, "Evaluating Interval Forecasts" International Economic Review, 39, 841-862.

## **Three Backtesting Principles**

- Unconditional Coverage: Do we get the right number of violations?
- Independence: Are violations randomly scattered over time?
- Joint Test: Do both hold at once?

These are formalised in the Bernoulli testing framework by Christoffersen (1998)

 These tests are model-free and work regardless of how VaR forecasts were generated

## **Testing Violations**

- We can test whether we get the expected number of violations and if there are patterns in the violations:
  - 1. The number of violations (tested by the unconditional coverage)
  - **2.** Clustering (tested by independence tests)
- If the model is correctly specified,  $\eta_t$  should be a Bernoulli random variable with success probability  $\rho$  (the VaR level)

#### **Distribution of Violations**

• We have a sequence of returns, VaR and violations  $\eta_t$ 

- The  $\{\eta_t\}_{t=W_E+1}^T$  is a sequence of 1 or 0
- And hence follows the Bernoulli distribution
- Note that the sequence starts at  $W_E + 1$  and ends at T and is hence  $W_T$  long
- The Bernoulli density (on day t) is given by:

$$(1-\rho)^{1-\eta_t}(\rho)^{\eta_t}, \quad \eta_t = 0, 1$$

#### **Estimation**

• The sample probability,  $\hat{\rho}$ , can be estimated by the average number of violations

$$\hat{\rho} = \frac{v_1}{W_T}$$

• The sample Bernoulli density (on day t) is given by:

$$(1-\hat{\rho})^{1-\eta_t}(\hat{\rho})^{\eta_t}, \quad \eta_t = 0, 1$$

# Bernoulli coverage test

## **Unconditional Coverage**

- Does the expected number of violations, as given by  $\rho$  match the observed number of violations from  $\hat{\rho}$ ?
  - ullet For a VaR(1%) backtest, we would expect to observe a violation 1% of the time
  - If, violations are observed more often, the VaR model is underestimating risk
  - And similarly if we observe too few violations
- However, unconditional coverage alone is insufficient when violations are clustered in time

## Bernoulli Coverage Test

- We can therefore test if the sequence  $\{\eta_t\}_{t=W_E+1}^T$  has the expected number of 1 and 0
- Use the Bernoulli coverage test
- The null hypothesis for VaR violations is:

$$H_0: \eta \sim B(\rho),$$

where B stands for the Bernoulli distribution

#### Likelihood

 Recall from Chapter 2 that the likelihood function is the product of the time t densities

$$(1-\rho)^{1-\eta_t}(\rho)^{\eta_t}, \quad \eta_t = 0, 1$$

• The unrestricted (using estimated probabilities,  $\hat{\rho}$ ) likelihood function is therefore given by:

$$L_{\boldsymbol{U}}(\hat{\rho}) = \prod_{t=W_F+1}^{T} (1-\hat{\rho})^{1-\eta_t} (\hat{\rho})^{\eta_t}$$

Which simplifies to

$$L_{\boldsymbol{U}}(\hat{\rho}) = (1 - \hat{\rho})^{\boldsymbol{v}_0}(\hat{\rho})^{\boldsymbol{v}_1}$$

• Recall v counts violations/no violations

• Under  $H_0$ ,  $\rho = \hat{\rho}$ , so the restricted likelihood function is:

$$\mathcal{L}_{R}(\rho) = \prod_{t=W_{E}+1}^{T} (1-\rho)^{1-\eta_{t}} (\rho)^{\eta_{t}}$$
$$= (1-\rho)^{\upsilon_{0}} (\rho)^{\upsilon_{1}}$$

• We can use a likelihood ratio (LR) test to see whether  $\mathcal{L}_R = \mathcal{L}_U$  or, equivalently, whether  $\rho = \hat{\rho}$ :

$$egin{align} \mathsf{LR} &= 2(\log \mathcal{L}_{\mathcal{U}}(\hat{
ho}) - \log \mathcal{L}_{\mathcal{R}}(
ho)) \ &= 2\log rac{(1-\hat{
ho})^{oldsymbol{v}_0}(\hat{
ho})^{oldsymbol{v}_1}}{(1-
ho)^{oldsymbol{v}_0}(
ho)^{oldsymbol{v}_1}} \ &\stackrel{\mathsf{asymptotic}}{\sim} \chi^2_{(1)} \ \end{split}$$

• Choosing a 5% significance level for the test, the null hypothesis is rejected if LR > 3.84

R

## **Bernoulli Coverage Test**

```
R
```

```
bern_test=function(p,v){
    Iv=length(v)
    sv=sum(v)
    al=log(p)*sv+log(1-p)*(Iv-sv)
    bl=log(sv/Iv)*sv +log(1-sv/Iv)*(Iv-sv)
    return(-2*(al-bl))
}
```

### **Floating Point Numbers in Practice**

- Computers use the IEEE 754 standard for representing real numbers
- Bit is 1 or 0
- A double-precision number (64-bit float) is stored as:
  - 1 bit for the sign
  - 11 bits for the exponent (range: roughly  $-10^{308}$  to  $10^{308}$ )
  - 52 bits for the fractional part (mantissa)
- This gives:
  - About 15–17 significant decimal digits of precision
  - But rounding errors for very large or very small numbers
  - Catastrophic cancellation when subtracting similar quantities
- Log-likelihoods involve multiplying (or dividing) many small probabilities easy to lose precision

#### **Numerical Considerations**

Note

$$(\log \mathcal{L}_U(\hat{
ho}) - \log \mathcal{L}_R(
ho)) = \log rac{(1-\hat{
ho})^{oldsymbol{v}_0}(\hat{
ho})^{oldsymbol{v}_1}}{(1-
ho)^{oldsymbol{v}_0}(
ho)^{oldsymbol{v}_1}}$$

but

$$\frac{\log(sv/lv)*sv + \log(1-sv/lv)*(lv-sv)}{-\log(p)*sv - \log(1-p)*(lv-sv)}$$

Can be different from

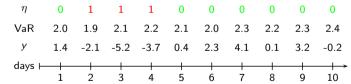
$$\frac{\log((sv/lv)^sv * (1-sv/lv)^(lv-sv)}{(p^sv * (1-p)^(lv-sv))}$$

• Where the latter is more likely to lose precision

# Independence Property

#### **Distribution of Violations**

- If violations tend to appear in clusters, something is wrong
- A good risk model should adapt quickly after a breach not allow repeated surprises
- ullet The indicator  $\eta_t=1$  (violation),  $\eta_t=0$  (no violation) should look random
- Suppose the violations cluster



Then we are violating the independence property

## **Independence Test**

- Do two violations follow each other?
- They should not because
- If they do, we can predict a violation today if there was one yesterday
- A good VaR model would have increased the VaR forecast following a violation
- We test this using a first-order Markov chain that only considers yesterday's violation state

## Setup

Look at violations today and yesterday

 $\eta_{\mathsf{yesterday},\mathsf{today}}$ 

• There are 4 cases

 $\eta_{00}$  No violation yesterday, no violation today

 $\eta_{11}$  Violation yesterday, violation today

 $\eta_{01}$  No violation yesterday, violation today

 $\eta_{10}$  Violation yesterday, no violation today

The theoretic probabilities are

 $ho_{ij}$ 

• The count of each case is

 $V_{ij}$ 

Total number of observations

$$v_{00} + v_{10} + v_{01} + v_{11}$$

#### What Is a Markov Chain?

- A Markov chain is a stochastic process where the future depends only on the present state — not the past history
- It is defined by a set of states and transition probabilities between them
- In our case:
  - The state is whether a VaR violation occurred  $(\eta_t=1)$  or not  $(\eta_t=0)$
  - We model the probability of a violation today based on whether there was one yesterday
- If the VaR model is correct, transitions should be independent:

$$\mathbb{P}(\eta_t = 1 \mid \eta_{t-1} = 1) = \mathbb{P}(\eta_t = 1 \mid \eta_{t-1} = 0)$$

This leads us to test whether observed transitions differ from this independence

#### **Markov Transition Matrix for Violations**

- Define a first-order Markov chain where today's violation depends on yesterday's
- We estimate four frequencies:  $\eta_{00}, \eta_{01}, \eta_{10}, \eta_{11}$
- The first order transition probability matrix is defined as

|                  | $\eta_t = 0$            | $\eta_{t}=1$              | sum                                                    |
|------------------|-------------------------|---------------------------|--------------------------------------------------------|
| $\eta_{t-1} = 0$ | $ ho_{00}$              | $ ho_{01}$                | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |
| $\eta_{t-1} = 1$ | $ ho_{10}$              | $ ho_{11}$                | $\rho_{10} + \rho_{11}$                                |
| sum              | $\rho_{00} + \rho_{10}$ | $ \rho_{01} + \rho_{11} $ | 1                                                      |

## Towards the null hypothesis

- Under the null hypothesis of no clustering, the probability of a violation tomorrow does not depend on today being a violation
- Then

$$\rho_{01} = \rho_{11} := \rho$$

And

$$\rho_{10} = \rho_{00} = 1 - \rho$$

• So the null transition matrix is simply:

$$\Pi = \left( \begin{array}{cc} 1 - \rho & \rho \\ 1 - \rho & \rho \end{array} \right)$$

## **Estimating the transition matrix**

Use the estimated number of violations

$$\hat{\Pi} = \begin{pmatrix} \frac{v_{00}}{v_{00} + v_{01}} & \frac{v_{01}}{v_{00} + v_{01}} \\ \frac{v_{10}}{v_{10} + v_{11}} & \frac{v_{11}}{v_{10} + v_{11}} \end{pmatrix} = \begin{pmatrix} \hat{\rho}_{00} & \hat{\rho}_{01} \\ \hat{\rho}_{10} & \hat{\rho}_{11} \end{pmatrix}$$

Then we want to test if

$$\hat{\Pi} = \Pi$$

#### Likelihood Ratio Test

• The likelihood under the null (constrained) is same as in the coverage test

$$L(\Pi) = (1 - \rho)^{\nu_{00} + \nu_{10}} \, \rho^{\nu_{01} + \nu_{11}}$$

 The approximate unconstrained likelihood function, because there are two states, is the product of each state:

$$L(\hat{\Pi}) = (1 - \hat{
ho}_{01})^{\nu_{00}} \, \hat{
ho}_{01}^{\nu_{01}} \, (1 - \hat{
ho}_{11})^{\nu_{10}} \, \hat{
ho}_{11}^{\nu_{11}}$$

The LR test is then:

$$LR = 2 \left( \log L \left( \hat{\Pi} \right) - \log L \left( \Pi \right) \right) \overset{\text{asymptotic}}{\sim} \chi^2_{(1)}$$

## **Problems With the Independence Test**

- The main problem with tests of this sort is that they must specify the particular way in which independence is breached
- The test only detects first-order dependence (one-day memory)
- However, there are many possible ways in which the independence property is not fulfilled:
  - Is the violation on days 1,3,5 and 7?
  - Test can't detect violation clustering

#### **Joint Test**

We can jointly test

$$\mathsf{LR}(\mathsf{joint}) = \mathsf{LR}(\mathsf{coverage}) + \mathsf{LR}(\mathsf{independence}) \sim \chi^2_{(2)}$$

 The joint test has less power to reject a VaR model which only satisfies one of the two properties

## What Does the Independence Test Tell Us?

- Tests whether VaR violations follow a memoryless process
- Detects models that react too slowly to changing risk
- Joint test with coverage provides stronger model validation
- We now apply it to S&P 500 models

## Testing S&P-500 1998 to 2009

| Model | Coverage test  |         | Independence test |         |
|-------|----------------|---------|-------------------|---------|
|       | Test statistic | p-value | Test statistic    | p-value |
| EWMA  | 18.1           | 0.00    | 0.00              | 0.96    |
| MA    | 81.2           | 0.00    | 7.19              | 0.01    |
| HS    | 24.9           | 0.00    | 4.11              | 0.04    |
| GARCH | 16.9           | 0.00    | 0.00              | 0.99    |

1998 to 2006

| Model | Coverage test  |         | Independence test |         |
|-------|----------------|---------|-------------------|---------|
|       | Test statistic | p-value | Test statistic    | p-value |
| EWMA  | 2.88           | 0.09    | 0.68              | 0.41    |
| MA    | 6.15           | 0.01    | 2.62              | 0.11    |
| HS    | 0.05           | 0.82    | 1.52              | 0.22    |
| GARCH | 1.17           | 0.28    | 0.99              | 0.32    |

#### So

- MA is rejected strongly both coverage and independence
- GARCH fails coverage but passes independence
- HS passes in early sample, fails in full sample
- EWMA performs reasonably especially in early data

# **Expected Shortfall Backtesting**

## Why Expected Shortfall is Hard to Backtest

• Expected Shortfall (ES) is the average loss in the worst  $\rho\%$  of cases:

$$\mathsf{ES} = -\,\mathsf{E}[q \mid q > \mathsf{VaR}]$$

- But ES is not defined by a single threshold breach it depends on the full shape of the tail
- Unlike VaR, ES is:
  - Not directly linked to a simple event (like a violation)
  - Not elicitable on its own (you cannot score forecasts with a simple loss function)
  - Sensitive to rare, extreme losses which occur infrequently
- Result: Traditional frequency-based backtesting (counting violations) does not apply
- ES backtests are necessarily approximated and unavoidably sensitive to VaR prediction errors

## Joint Elicitability of VaR and ES

- Although ES is not elicitable alone, it is jointly elicitable with VaR
- This was shown by Fissler and Ziegel (2016)
- Joint scoring functions allow consistent evaluation of forecasts
- Enables meaningful comparison and backtesting of models producing both VaR and ES
- All ES backtests (including Acerbi-Székely) rely on this joint property
- Consequence: ES backtest accuracy depends on VaR prediction quality

## The Acerbi-Székely (2019) ES Backtest

- Since ES cannot be tested directly via violation counting:
  - Define a scoring function that penalises ES forecast errors
  - Evaluate whether observed losses align with forecast ES given VaR violations
- Key insight: The test function

$$Z_{\mathsf{ES}}(\mathsf{ES}_t,\mathsf{VaR}_t,q_t) = \mathsf{ES}_t - \mathsf{VaR}_t - rac{1}{
ho}(q_t + \mathsf{VaR}_t)_+$$

compares forecast ES with VaR plus the average excess loss beyond VaR

- The term  $\frac{1}{\rho}(q_t + \mathsf{VaR}_t)_+$  represents the mean tail loss when losses exceed  $\mathsf{VaR}$
- Here  $(x)_+ = \max(x, 0)$  is the positive part function
- Under perfect forecasting, this should equal the difference between ES and VaR

## Bias in the Acerbi-Székely Test

- Expected value:  $E[Z_{ES}] = ES_t ES_t^{true} B(VaR_t)$  where  $B(VaR_t) \ge 0$  is a bias term
- This bias is:
  - Zero when VaR predictions are perfect  $(VaR_t = VaR_t^{true})$
  - Small when VaR predictions are reasonably accurate
  - Prudential: makes the test more conservative, not more lenient

## Acerbi-Székely Test: Implementation

• Define the scaled score at time t using realised loss  $q_t$ , forecast VaR and ES:

$$S_t = rac{q_t - \mathsf{ES}_t}{\mathsf{VaR}_t - \mathsf{ES}_t} \cdot 
ot \Vdash_{\{q_t > \mathsf{VaR}_t\}}$$

- Here  $\mathbb{1}_{\{q_t>\mathsf{VaR}_t\}}$  is the indicator function: equals 1 if  $q_t>\mathsf{VaR}_t$ , zero otherwise
- Under correct forecasts, the sequence  $\{S_t\}$  should have mean zero and finite variance

## Why the Test Statistic Follows $\mathcal{N}(0,1)$

• The test statistic is:

$$Z = \frac{\sqrt{W_T} \cdot \bar{S}}{\hat{\sigma}}$$

where 
$$ar{S} = rac{1}{W_T} \sum_{t=1}^{W_T} S_t$$

- Under the null hypothesis (correct forecasts):
  - Sample mean  $\bar{S}$  has expected value zero
  - Central Limit Theorem:  $\bar{S}$  is approximately normal with variance  $\sigma^2/W_T$
  - Standardisation: dividing by estimated standard deviation  $\hat{\sigma}$  gives unit variance
- Result:  $Z \sim \mathcal{N}(0,1)$  under null hypothesis of correct ES and reasonably accurate VaR

## **Bias Properties and Practical Implications**

- The bias term B(VaR<sub>t</sub>) in the Acerbi-Székely test is:
  - Quadratic in small VaR discrepancies:  $B(VaR_t) \approx \frac{f(-VaR_t^{true})}{2\rho}(VaR_t VaR_t^{true})^2$
  - Here f is the pdf of the actual return distribution (not necessarily normal)
  - ullet Typically negligible when VaR predictions are within  $\pm 15\%$  of true values
  - ullet Still manageable when VaR accuracy is within  $\pm 40\%$
- Prudential nature means:
  - Imperfect VaR predictions make ES tests more stringent, not more lenient
  - Type II errors (accepting bad models) are less likely
  - Conservative approach suitable for risk management
- Practical requirement: VaR models should be reasonably well-calibrated before ES backtesting

#### **Limitations and Practical Considerations**

- The reliability of any ES backtest procedure is lower than that of VaR
  - With ES, we test whether the mean of returns on days when VaR is violated equals the average ES forecasts on these days
  - Much harder to create formal tests than the coverage tests for VaR violations
  - Test accuracy depends critically on VaR prediction quality
- ES backtesting requires many more observations than VaR backtesting
- The Acerbi-Székely approach requires VaR predictions to be reasonably accurate
- When ES is obtained directly from VaR and provides the same signal as VaR (when VaR is subadditive), VaR backtesting may be more reliable

# Problems with Backtesting

#### Structural Breaks

- Backtesting assumes that there have been no structural breaks in the data throughout the testing period:
  - But financial markets are continually evolving,
  - New technologies, assets, markets and institutions affect the statistical properties of market prices
  - Unlikely that the statistical properties of market data in the 1990s are the same as today,
  - Implying that a risk model that worked well then might not work well today

## **Intellectual Integrity**

- Backtesting is only statistically valid if we have no ex ante knowledge of the data in the testing window
- If we iterate the process, continually refining the risk model with the same test data
  - and thus learning about the events in the testing window,
  - the model will be fitted to those particular outcomes,
  - violating underlying statistical assumptions
- So the actual confidence bounds are wider that suggested by the testing

# Stresstesting

## **Stresstesting**

- Create artificial market outcomes to see how risk management systems and risk models cope with the artificial event
- Assess the ability of a bank to survive a large shock
- The main aim is to come up with scenarios that are not well represented in recent historical data but are nonetheless possible and detrimental to portfolio performance

## **Types of Stress Tests**

- **Sensitivity** shock one risk factor at a time (+100 bp rates, -10% equity)
- Historical replay a past crisis window (2008–09, 2020 Q1)
- Hypothetical forward-looking narrative combining multiple shocks (pandemic plus stagflation)
- Reverse search for the smallest scenario that breaches a capital or liquidity limit

## **Examples of Historical Scenarios**

| Scenario               | Period       |  |
|------------------------|--------------|--|
| Stock market crash     | October 1987 |  |
| Asian currency crisis  | Summer 1997  |  |
| LTCM and Russia crisis | August 1998  |  |
| Global crisis          | 2007 to 2009 |  |
| Eurozone crisis        | 2010-2015    |  |
| Brexit                 | 2017         |  |
| Covid-19               | 2020         |  |

#### Stressed VaR

- Banks are now required to calculate stressed VaR
- While there are several ways to do that, here is a really simple approach
- Suppose we have a sample  $1, \ldots, W_E, \ldots, T$
- We have a  $VaR_{t+1}$
- The stressed VaR is

$$\mathsf{SVaR}_{t+1} = \mathsf{max}\,\mathsf{VaR}_i, \quad i = W_E + 1, \dots, T + 1$$

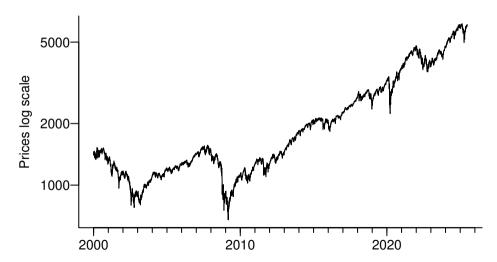
## Recent Stress Events

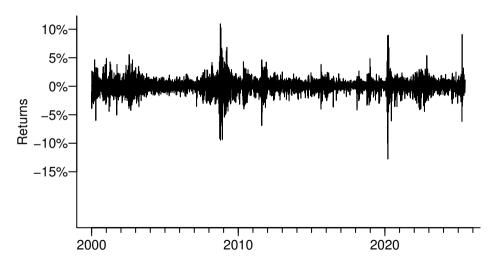
## Backtesting the S&P-500 in Times of Stress

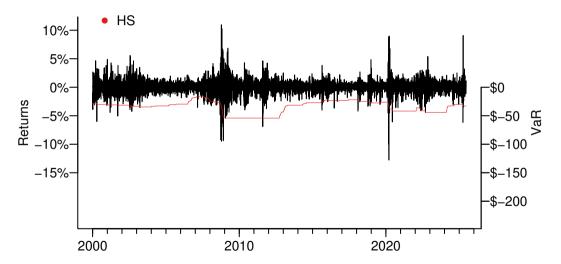
- Make the estimation window 1,000 days
- Probability: 1%
- Portfolio value 1,000
- And compare GARCH, tGARCH and historical simulation

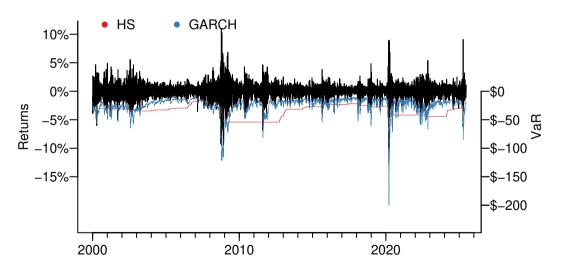
### S&P-500

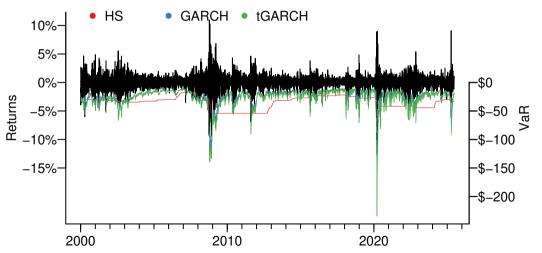
- We then take a sample from the S&P-500
- There are some especially interesting regimes,
- The collapse of volatility after 2003 and the crisis in 2008
- Covid in 2020
- Russia-Ukraine war and inflation in 2022-2024
- Trump tarrifs 2025







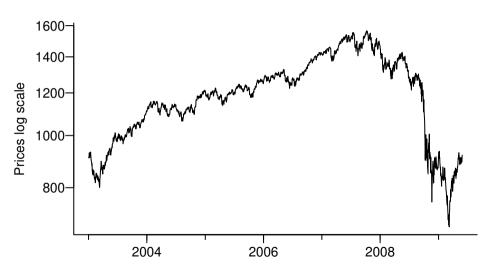




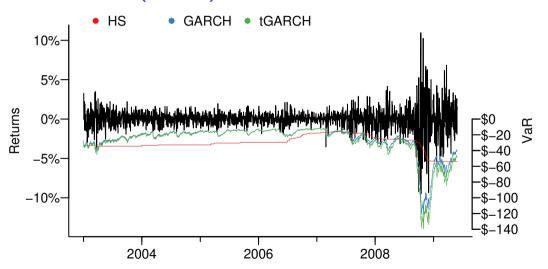
## (Almost) Global Crisis in 2008

- "Great Moderation" 2003-2007
- Followed by a crisis that hit many countries
- Started in June 2007 with a quant fund crisis
- Investors "went on strike" in July 2007
- Crisis peaked in end of September 2007/October 2008
- Intensive crisis phase over early December
- Markets begin to recover in early 2009

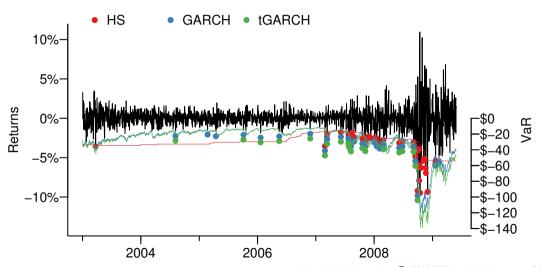
## (Almost) Global Crisis in 2008



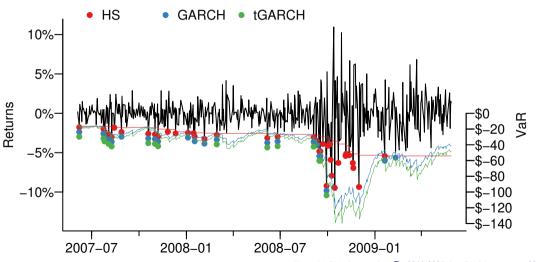
# (Almost) Global Crisis in 2008



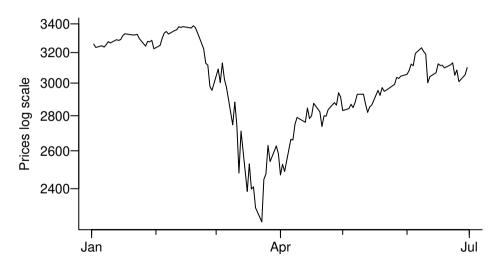
# (Almost) Global Crisis in 2008

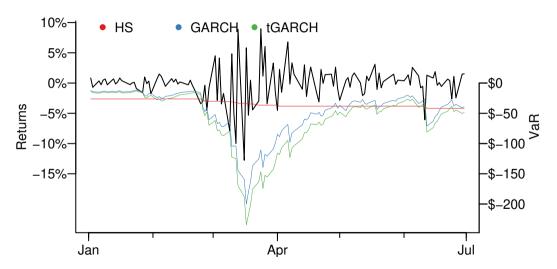


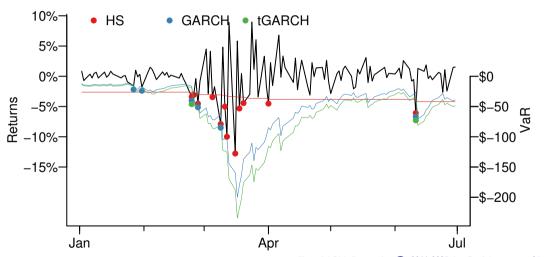
### (Almost) Global Crisis in 2008 — Zoom into Crisis



- Markets in China fall in February
- Rest of world starts in March
- 14 April worst day
- Market recover quickly
- "V" shape crisis



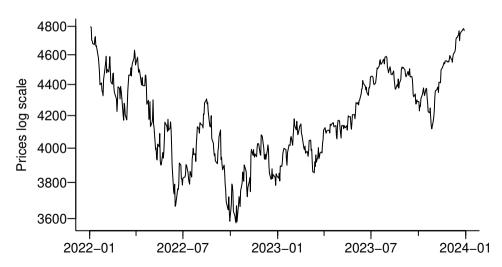




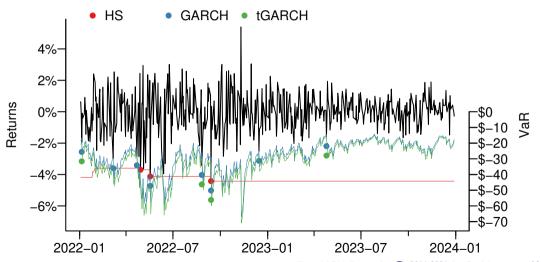
### 2022-2024

- Russia invades Ukraine
- Very little impact on US (and hence S&P-500)
- Biggest impact on Germany
- The inflation shock that year and next more important

### 2022-2024

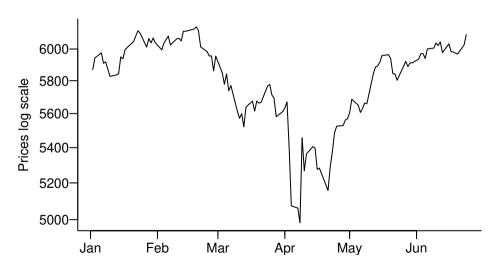


#### 2022-2024

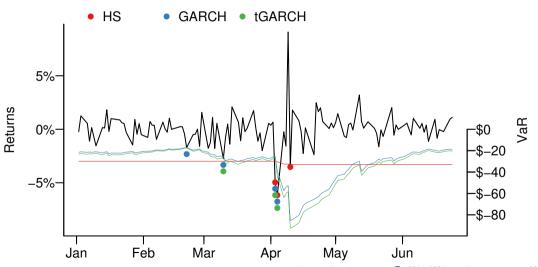


# **Trump Tarrifs**

- Initial market reaction to Trump positive
- Shock on announcement dates
- Very quick recovery
- What do you think these results say about the market consensus on the impact of Trump?







# What We Learn from Backtesting in Crisis

- VaR models differ in responsiveness to regime shifts
- GARCH can overshoot after volatility collapses
- Real-world backtesting reveals limits of statistical calibration
- Visual inspection complements formal testing

## **Direct Comparison**

- A direct comparison shows that most of the HS violations are at the height of the crisis
- While GARCH is more evenly distributed throughout the sample
- And interestingly may not be violated on the worst day of the crisis
- Why do you think that is the case?
- These results confirm what we have found for the same methods in other cases